Cattle

Monitoring estrus intensity in cattle helps optimise reproduction and can be done efficiently with visual estrus detection aids. (Image source: ESTROTECT)

Although all estrus cycles are not the same for individual females within a herd, it is one of the most important indicators of whether a cow or heifer will be successfully bred

Animal reproduction professor at the University of British Columbia in Canada, Ronaldo Cerri, PhD is carrying out research work to improve cattle fertility by identifying which cows and heifers are the best candidates to breed using tactics like artificial insemination (AI) and embryo transfer (ET), with estrus intensity as the deciding factor.

Cattle have typical baseline activity when they aren’t in estrus. When they start to enter estrus, their activity rises as the intensity of the estrus increases. Pinpointing when estrus is about to peak is crucial to a successful pregnancy. 

After analysing extensive data from estrus detection sensors, Cerri and other researchers have pinpointed patterns based on what’s occurring during estrus. Cows exhibiting low estrus intensity tend to have lower concentrations of progesterone during the growth of the ovulatory follicle and fail to ovulate more often than those with high estrus intensity. Similarly, ET recipients that show high estrus intensity have more consistent pregnancy results.

“The patterns are very consistent in many of the studies we do,” said Cerri. “Cows with lower estrus intensity always display less physical activity, but they also have lower pregnancy rates. On the flip side, cows with high estrus intensity display more activity and have higher pregnancy rates.”

Evaluating estrus intensity

Using heat detection tools to evaluate estrus intensity can help to pick and choose which cows are the best candidates to breed at a particular time. While implementing a mass breeding protocol, offers the option to use estrus intensity to direct choices on what type of genetics to use.

With breeding indicator patches, estrus can be monitored by looking for patches that have 50% or more of the surface ink rubbed off as being in high estrus intensity and are ready to breed. Females with less than 50% of the surface ink rubbed off are in low estrus intensity and could be bred with lower-cost genetics or bred later when they have reached high estrus intensity.
 
With millions of units sold around the world, the ESTROTECT Breeding Indicator is the industry standard for optimising cattle breeding efficiency and economics which has been tested in a multitude of university studies by researchers.

Ambient Carbon’s mission is to develop and commercialize effective, safe, and scalable technologies that mitigate greenhouse gas emissions. (Image source: Adobe Stock)

Denmark-based company, Ambient Carbon has announced its new partnership with Benton Group Dairies to field-test a prototype of Ambient Carbon’s Methane Eradication Photochemical System (MEPS)

This first-of-a-kind non-invasive technology helps remove methane from airy barn exhaust. Ambient Carbon also has a Memorandum of Understanding (MoU) with Danone North America which sources milk from Benton. This month, the company will install methane monitors at Benton's dairy farm in Ambia, Indiana in preparation for installing and testing a MEPS field prototype in early 2025. 

On 2 October, the National Academies of Sciences, Engineering and Medicine (NASEM) released a new report on the need and potential for atmospheric methane removal. MEPS is a point-source methane removal system which is the only scalable, cost-effective solution for eradicating low-concentration (non-flammable) methane from cattle and manure, as well as other point sources. It uses a patented gas-phase photochemical process that combines chlorine atoms and UV light in a reaction chamber, mimicking a natural process of methane destruction in the atmosphere.  As dairy barn air is cycled through MEPS, it breaks down methane at its source, preventing its release into the ambient air. The chlorine atoms are generated onsite via electrolysis of saltwater, and after eradicating 80-90% of the methane, the chlorine is recycled in a closed system.  

While the Indiana tests are underway, Ambient Carbon will also test another MEPS field prototype in Denmark as part of the AgriFoodTure PERMA Project, which includes Northern European dairy cooperative Arla, and is publicly funded by Innovation Fund Denmark and the EU’s NextGenerationEU

“We believe that by 2030, Ambient Carbon will be eliminating well over one gigaton of CO2 equivalent annually by destroying methane from dairy barns and other low-concentration methane sources such as wastewater treatment plants and biogas plants,” said Ambient Carbon’s co-founder and COO, David S Miller, while Chris Williams, conservation lead at Benton Dairies also expressed his enthusiasm regarding their collaboration with Ambient Carbon.

Research has shown that Bovaer can greatly reduce methane emissions with just a quarter teaspoon of the additive per cow per day. (Image source: Adobe Stock)

dsm-firmenich has recently announced that its innovative methane-reducing feed additive Bovaer has received market approval for use with beef cattle in South Korea, making it the first product the country has approved for this purpose

Marking a significant step towards more sustainable agriculture in South Korea, this approval enables farmers to effectively and immediately reduce methane emissions, a potent greenhouse gas. The approval of Bovaer is part of dsm-firmenich’s global strategy to contribute to sustainable livestock farming, supporting the health of the planet, animals and people. It aligns with South Korea's proactive approach, which includes a comprehensive framework to support farmers in transitioning to sustainable practices and a recently launched low-methane feed programme

Bovaer offers an effective solution to 3.6 million beef cattle, including the renowned Hanwoo breed, that could greatly advance South Korea's sustainability goals. As a signatory of the Global Methane Pledge, South Korea is committed to significantly reducing methane emissions by 2030. 

Research has shown that Bovaer can greatly reduce methane emissions with just a quarter teaspoon of the additive per cow per day. This innovation not only supports South Korea’s environmental commitments but also enhances the sustainability of its beef production, benefiting the entire supply chain from farmers to consumers.

Read more about Bovaer's contributions to boosting dairy sustainability.