webvic-c

Infrastructure

Malaysian agri-tech innovator Agroz Inc. has launched a groundbreaking AI-driven farming strategy designed to transform modern agriculture into a scalable and profitable asset class. Through its new Agroz OS platform, built on Microsoft Azure’s AI infrastructure, the company is redefining how crops are grown, managed, and distributed — offering a smarter, greener path for farmers and investors alike. The Agroz OS platform merges artificial intelligence, automation, and data analytics to support vertical farming systems that use less land and water while producing clean, pesticide-free crops. This approach is particularly valuable for regions like Africa, where efficient resource use and reliable yields are key to long-term food security. Agroz’s model treats food production as distributed infrastructure — modular, measurable, and investable. Its first commercial venture, developed with Harvest Today, LLC, uses patented Harvest Wall™ technology to demonstrate how vertical farming can bring fresh produce closer to urban centres while reducing environmental impact. “We are building agriculture into the next great infrastructure class. With strong government incentives and the rapid adoption of agri-tech, this is the right time to show how technology, sustainability, and capital can work together to generate lasting economic and environmental returns,” said Gerard Lim, Director and Chief Executive Officer of Agroz. Beyond its cutting-edge vertical farms, Agroz is introducing Agroz Copilot, an intelligent AI assistant that helps farmers make better real-time decisions — from predicting crop health to managing energy use. The system’s integration of automation and analytics means farmers can increase productivity while keeping costs low. Agroz’s sustainable farming approach aligns with 10 United Nations Sustainable Development Goals (SDGs), earning recognition from UNDP Malaysia, ESG Malaysia, and several national innovation awards. With Malaysia’s 10-year income tax exemption for agricultural ventures under Budget 2026, the company is positioned to expand rapidly across Asia and, potentially, emerging African markets. As Agroz continues to grow, it aims to make AI-driven, sustainable agriculture accessible for farmers everywhere — empowering them to achieve higher yields, improve soil health, and build a resilient food system for the future.(Image credit: Agroz)

Malaysian agri-tech innovator Agroz Inc. has launched a groundbreaking AI-driven farming strategy designed to transform modern agriculture into a scalable and profitable asset class

Through its new Agroz OS platform, built on Microsoft Azure’s AI infrastructure, the company is redefining how crops are grown, managed, and distributed offering a smarter, greener path for farmers and investors alike.

The Agroz OS platform merges artificial intelligence, automation, and data analytics to support vertical farming systems that use less land and water while producing clean, pesticide-free crops. This approach is particularly valuable for regions like Africa, where efficient resource use and reliable yields are key to long-term food security.

Agroz’s model treats food production as distributed infrastructure  modular, measurable, and investable. Its first commercial venture, developed with Harvest Today, LLC, uses patented Harvest Wall technology to demonstrate how vertical farming can bring fresh produce closer to urban centres while reducing environmental impact.

“We are building agriculture into the next great infrastructure class. With strong government incentives and the rapid adoption of agri-tech, this is the right time to show how technology, sustainability, and capital can work together to generate lasting economic and environmental returns,” said Gerard Lim, Director and Chief Executive Officer of Agroz.

Beyond its cutting-edge vertical farms, Agroz is introducing Agroz Copilot, an intelligent AI assistant that helps farmers make better real-time decisions - from predicting crop health to managing energy use. The system’s integration of automation and analytics means farmers can increase productivity while keeping costs low.

Agroz’s sustainable farming approach aligns with 10 United Nations Sustainable Development Goals (SDGs), earning recognition from UNDP Malaysia, ESG Malaysia, and several national innovation awards. With Malaysia’s 10-year income tax exemption for agricultural ventures under Budget 2026, the company is positioned to expand rapidly across Asia and, potentially, emerging African markets.

As Agroz continues to grow, it aims to make AI-driven, sustainable agriculture accessible for farmers everywhere - empowering them to achieve higher yields, improve soil health, and build a resilient food system for the future.

Enhance Agricultural Resilience with Solar Energy.

The SoLAR project, funded by the Swiss Agency for Development and Cooperation (SDC), is entering its second phase, aiming to deepen agricultural resilience and climate transformation in smallholder farming

Launched by the International Water Management Institute (IWMI), the initiative runs from July 2025 to December 2029 and expands its geographical and thematic focus, now incorporating Ethiopia and Kenya, while continuing its work in Bangladesh, India, Nepal, and Pakistan. Building on the success of its first phase (2019–2024), SoLAR looks to scale solar energy solutions for agriculture and position them as a replicable and scalable model for climate-resilient agriculture across the Global South.

In its first phase, SoLAR focused on generating evidence, piloting innovative financing models, and influencing policy to integrate solar-powered irrigation systems (SIPs). These solar pumps have proven effective in mitigating climate impacts by replacing diesel pumps and promoting sustainable groundwater usage. “Across the four South Asian countries, we have seen promising steps toward scaling solar irrigation sustainably and inclusively,” said Darshini Ravindranath, Project Lead and Research Group Leader at IWMI. The project has helped governments in Bangladesh and India integrate solar irrigation into national strategies, while in Nepal, it led to a significant policy shift, including revised subsidy criteria supporting women farmers and smallholders.

Key outcomes include the promotion of gender-sensitive policies, innovative financing such as micro-financing and grants, and the adoption of solar irrigation systems that reduce carbon emissions, conserve groundwater, and support high-value crops. IWMI’s work also extended to grid-connected solar irrigation in Nepal, enabling farmers to sell surplus energy, providing them with additional income streams while promoting responsible groundwater use.

In phase two, SoLAR will expand its reach to East Africa, focusing on scaling solar-powered solutions for irrigation, cooling, and processing. With Kenya and Ethiopia facing climate and energy challenges, the project sees solar technology as a transformative tool for boosting year-round agricultural production and enhancing food security. Muluken Elias Adamseged, Deputy Country Representative at IWMI in Ethiopia, remarked, “Scaling solar-powered irrigation, cooling, and processing can boost year-round production, cut losses and costs, and enhance food security.”

The second phase aims to drive an integrated approach with evidence-based policy design, accelerated funding for solar adoption, enhanced capacity building, and the establishment of Living Labs to test solar solutions in diverse settings. The program will directly benefit smallholder farmers in India, Bangladesh, Kenya, and Ethiopia by improving water and energy security, reducing emissions, and enhancing resilience to climate risks, according to Philippe Sas, Head of Cooperation for SDC in India.

These technologies also make farming more accessible for younger generations.

Unitree Robotics, known for creating user-friendly and affordable robots, is now bringing its technology to farming.

As rural areas face a shortage of younger workers and an ageing labour force, many tech companies are turning to robotics and digital solutions to modernise agriculture. In line with this, Unitree has teamed up with a top agricultural research institution to explore how robots can support smarter, more efficient farming practices.

Traditionally, farmers have relied on their experience to judge the health and condition of crops. But modern robotics, powered by AI vision and edge computing, can now carry out these tasks more accurately and efficiently. These technologies also make farming more accessible for younger generations, who can become "robot managers" and take on farming roles without needing years of experience.

Unitree’s consumer-grade quadruped robot, Go2, is leading this change. Priced from just US$1,600, Go2 is affordable and well-suited to agriculture, thanks to its strong performance, adaptability, and ability to work in tough conditions. Farming environments pose unique challenges, such as varying lighting and ever-changing crop shapes, which demand advanced sensing and recognition abilities.

To meet these needs, Go2 has been equipped with a specialised camera and agricultural sensors that track the growth of seedlings in real time. It uses a custom AI vision model tailored for farming. This AI, supported by edge computing, allows the robot to analyse and identify plant conditions on the spot. The data collected is then sent to a central system, which uses agricultural big data to suggest specific farming strategies based on the crop’s growth stage.

This integrated setup, from the robot in the field to the cloud-based platform, helps reduce the physical burden on farmers. At the same time, it offers researchers detailed and frequent field data, helping to speed up scientific progress in agriculture.

As one industry observer noted, “civilian-grade robots, through deeper integration into agricultural environments, are opening up broader application prospects for advanced legged robotics.”

Unitree continues to develop high-quality legged and humanoid robots for the public. With practical tools like Go2, the company is helping to replace hard, repetitive, and risky work with smart automation-making farming more efficient and improving the overall quality of life.

Technologies can improve farming efficiency and strengthen the supply chain.

Nezar Patria, Deputy Minister of communication and digital affairs, has stressed the vital role of artificial intelligence (AI) and data in transforming Indonesia’s agricultural sector.

He highlighted that strong digital infrastructure is the foundation for achieving sustainable agriculture across the country.

“To really take advantage of AI power and data, a strong digital infrastructure is very important. This includes evenly distributed broadband access and an inclusive digital platform for farmers and agri-food business actors,” Nezar said during an official broadcast.

He emphasised that digital transformation in agriculture is not about following global trends, but a strategic move to address national food security challenges. Technologies such as smart sensors, drones, automation, and predictive analytics can significantly improve farming efficiency, reduce waste, and strengthen the supply chain from production to distribution.

“AI and data can revolutionize our entire agri-food ecosystem,” he added.

To support this transformation, the ministry of communication and digital affairs (Komdigi) is speeding up the expansion of digital infrastructure in rural areas. The ministry is also promoting digital literacy and working closely with universities like Gadjah Mada University (UGM) to advance research, training, and the development of technology-based solutions for agriculture.

Nezar called on academics, farmers, and all stakeholders to join forces in strengthening national food sovereignty. “AI and data are bridges to Indonesia’s more productive, inclusive, and sustainable agricultural future,” he concluded.

Collaboration on Environmental Protection and Management.

Deputy Minister of Higher Education, Science, and Technology, Fauzan, has called on universities in Indonesia to play an active role in addressing environmental issues in their local communities.

The aim is to promote environmental resilience and sustainability across the nation.

Fauzan made these comments at the 2025 Rectors' Forum: Collaboration on Environmental Protection and Management, held in Jakarta on Monday, July 28, 2025. The event brought together 41 university leaders from across Indonesia.

"We are seeking to encourage universities to participate in conceptualizing themselves as social entities with a high level of environmental awareness," Fauzan said in a statement following the forum.

He also noted that this initiative aligns with President Prabowo Subianto's Asta Cita goals and the government's quick-win programs, which place sustainable development and environmental resilience at the core of Indonesia's national transformation.

"Let us safeguard the environment with science and technology, not only from what is visible but also from the moral values that shape the nation," Fauzan remarked.

At the same forum, Environment Minister Hanif Faisol Nurofiq highlighted the importance of scientific input in policy-making. According to Minister Nurofiq, universities are pivotal in validating Environmental Impact Analysis (Amdal) documents, developing waste management technology, and preparing Strategic Environmental Studies (KLHS). He also noted that universities should provide cross-disciplinary education to support sustainability efforts.

The Minister pointed out that 12 percent of environmental permit applications were rejected in 2023 due to failure to meet carrying capacity requirements. In 2022 . Furthermore, the country generated 56.63 million tonnes of waste in 2023, but only 39 percent of this was effectively managed.

More than 150 districts and cities in Indonesia also reported an Environmental Quality Index (EQI) below 65, indicating that many regions face significant environmental challenges.

In conclusion, both Fauzan and Nurofiq emphasised that universities must become key players in Indonesia’s environmental efforts, utilising science and technology to improve sustainability and address pressing environmental issues across the country.

More Articles …